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I. Formation and rise of a bubble stream in a viscous liquid
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Abstract. The continuous emission of gas bubbles from a single ejection orifice immersed in a viscous
fluid is considered. We first present a semi empirical model of spherical bubble growth under constant
flow conditions to predict the bubble volume at the detachment stage. In a second part, we propose a
physical model to describe the rise velocity of in-line interacting bubbles and we derive an expression for
the net viscous force acting on the surrounding fluid. Experimental results for air/water-glycerol systems
are presented for a wide range of fluid viscosity (43 mPa s − 800 mPa s) and compared with theoretical
predictions. An imagery technique was used to determine the bubble size and rise velocity. The effects of
fluid viscosity, gas flow rate, orifice diameter and liquid depth on the bubble stream dynamic were analyzed.
We have further studied the effect of large scale recirculation flow and the influence of a neighbouring bubble
stream on the bubble growth and rising velocity.

PACS. 47.55-t Nonhomogeneous flows – 47.55.Dz Drops and bubbles – 47.10.+g General theory

1 Introduction

Bubbles play a significant role in many important indus-
trial processes. Air bubblers are used in biochemical, poly-
mer and other industries for improving the heat and mass
transfer from a dispersed gaseous phase to the viscous
liquid phase. In glass tank furnaces, rows of bubbles gen-
erated in vertical streams reinforce glass currents, insure
glass uniformity and improve fining [1]. In many of these
processes, bubbles are formed by blowing a constant gas
flow through a fine capillary tube immersed in the fluid
phase.

The present paper concerns the bubble formation in
a quiescent liquid and the momentum exchange between
a vertically upward stream of in-line interacting bubbles
and the surrounding fluid. The process of bubble growth is
of great influence on the bubble volume and rise velocity.
Many workers have investigated the dynamic of bubble
growth from immersed orifices in Newtonian fluids and a
review has been published by Kumar and Kulor [2]. In a
first section, we present a semi empirical model of bub-
ble growth based on a dynamic force balance [2–8]. After
the detachment stage, the bubble rising velocity depends
on buoyancy forces and hydrodynamic interactions. The
problem of in-line interacting bubbles has received much
less attention. In the present work, we propose both an
analogy with the settling of cylinders and a mean field
model based on the estimation of the energy dissipation
in the fluid phase to estimate the upward velocity rise
of the bubble chain and the viscous force acting on the
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fluid. In a second section, we present experiments with
water-glycerol solutions for a wide range of fluid viscos-
ity (43 mPa s – 800 mPa s), air flow rate up to 0.5 l/mn
and nozzle orifice diameter from 0.3 mm to 0.6 mm. From
visualization and sequential image acquisition, we deter-
mine both the volume and the velocity rise of bubbles
generated in a stream. In the last section, we discuss the
effect of large scale recirculation flow and the influence of
a neighbouring bubble stream on the process of bubble
formation. The objectives of the present work were to de-
velop a physical analysis of the bubble stream dynamics
in a viscous fluid and to compare the predictions of the
model with the experimental investigation. The compan-
ion paper concerns the experimental and numerical study
of the recirculation flow induced by a rising chain of bub-
bles in a tank [30].

2 Bubble formation in a viscous liquid

A schematic diagram of the ideal formation of spherical
bubbles is shown in Figure 1. We consider a long vertical
capillary tube (inner diameter da) submerged in a viscous
fluid (viscosity η , density ρ). Gas flowing (density ρg) at
constant flow rate Q through the tube causes the forma-
tion of a bubble until detachment from the nozzle. The
use of a long capillary tube insures the gas flow rate to
be constant during bubble growth. The periodic emission
of bubbles then results in a vertical rising bubble stream.
The liquid is deep compared to the bubble diameter and
the liquid bath is large so that the effect of both side walls
and large scale recirculation flow are negligible.
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Fig. 1. Schematic representation of bubble stream formation.

For low values of the Reynolds number (Re =
Wdρ/η < 1 where g is the gravity acceleration, d the
bubble diameter and W the bubble average velocity) one
can consider a spherical growth of bubbles [9]. Direct ob-
servations by high speed cinematography show two stages
in the bubble formation at constant gas flow [2,8]. During
the expansion stage, the bubble remains attached to the
nozzle tip and the diameter d of the spherical drop (vol-
ume V = πd3/6) increases with time. At the beginning
of the detachment stage, the net upward force becomes
greater than the downward force. The spherical bubble
then moves away from the orifice but remains connected
to the nozzle through a cylindrical neck (Fig. 1). In most
of the theoretical studies [2–8] the bubble volume is de-
rived from a semi empirical model based on a force balance
around the spherical bubble at the instant just previous
to detachment when the neck is broken off:

Fb + Fg + Fp = Fd + Fi + Fσ (1)

– buoyancy force Fb = (ρ− ρg)gV
– gas momentum force

Fg =
π

4
d2
aρgW

2
g with Wg = 4Q/(πd2

a)

– pressure force Fp =
π

4
d2
a(Pg − P )

– drag force Fd =
1

2
ρW 2 πd2

4 C∗d

– inertial force Fi =

(
α+

ρg

ρ

)
ρV γ

– surface tension force Fσ = πdaσ

where Wg is the gas velocity through the tube, W the
average velocity of bubble expansion, γ the average bubble
acceleration, C∗d the average drag coefficient, σ the surface
tension of the liquid, Pg the gas pressure in the bubble and
P the average liquid pressure.

We can neglect the pressure force acting in the up-
ward direction since the gas pressure Pg in the bubble
is equal to the liquid pressure at the plane of the bub-
ble base. The inertial force associated to the momentum
of the surrounding liquid motion involves an added fluid
mass αρV considered at the point of detachment. Nozzle
wall effects may influence the dimensionless inertial pa-
rameter 1/2 ≤ α ≤ 11/16 since the added mass is ρV/2
for a sphere in an infinite stream and 11ρV/16 for a sphere
moving perpendicular to a wall in inviscid fluid [10].

Convective or recirculation flows may have some influ-
ence on the growth process and the bubble size at the de-
tachment stage [8–11]. Chuang and Goldschmidt [12] have
proposed a first order expression of the modified drag force
Fd acting on a bubble in upward flow (average velocity U)
based on the relative co-flowing velocity U −W :

Fd = C∗d
π

4
(d2 − d2

a)(U −W )2 ρ

2
· (2)

If bubbles are generated in a stream with a high frequency,
the bubble may further experience an additional upward
force due to the wake formed by the preceding bubble.
Experiments from Chuang and Goldsmith only show a
wake effect for closely interacting bubbles generated from
small capillaries (da < 100 µm) with a high frequency
emission [12].

In the present work, we consider moderate gas flow
rate and we neglect both gas momentum (ρg � ρ), wake
effects and recirculation flows near the nozzle (U � W ).
The force balance (1) at the moment of bubble detachment
then becomes:

ρgV =
π

8
d2C∗dρW

2 + πdaσ + αρV γ · (3)

The average expansion velocity W and average acceler-
ation γ must now be defined. In the detachment stage,
the bubble base begins to rise vertically until the bubble
neck breaks off. Most of the models use an empirical re-
lation for the distance Zd covered by the bubble centre
at the end of the detachment stage (Fig. 1). The anal-
ysis of cine-photographs indicates that the length dc of
the bubble neck just prior detachment lies in the range
0 < dc < d/2 [2,5,13]. Therefore, we assume a length
neck dc ≈ d/4 in good agreement with accurate mea-
surements made by Räbiger et al. [14]. From the bubble
expansion time tb = V/Q and the translation distance
Zd ≈ d/2 + dc ≈ 3d/4 of the bubble centre at the de-
tachment stage, a first order approximation of the bubble
average expansion velocity W and bubble average accel-
eration γ is derived:

W ≈
Zd

tb
=

3dQ

4V
and γ '

W

tb
=
WQ

V
· (4)

Substituting the above relations in the force balance (3),
we get :

π

3
d3ρg =

(
81C∗d

16
+ 9α

)
ρQ2

πd2
+ πdaσ · (5)

Several analytical forms of the drag coefficient for a freely
rising bubble are available [2,13]. Experimental data from
Miyahara et al. [15,16] and Al Hayes [17] give a drag co-
efficient Cd = 16/Re+ 1 close to unity for large Reynolds
number (Fig. 2). Since the growing bubble is attached to
the nozzle, most of authors assume no internal gas circula-
tion at low Reynolds number and then use the Stokes rela-
tion C∗d = 24/Re for a solid sphere [2]. Despite the bubble
attachment which limits the internal gas circulation, large
growing bubbles are expected to behave differently from
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Fig. 2. Drag coefficient Cd(Re) of single air bubbles freely
rising in various liquids from Miyahara and Takahashi [15].
For Morton number M = gη4/(ρσ)3 > 10−7, experimental
data are well represented by Cd = 16/Re + 1 (solid line).

solid spheres at high Reynolds number. Therefore, we con-
sider a solid sphere behavior in the creeping regime and
a freely circulating sphere in the inertial regime to derive
a semi empirical formula for the drag coefficient C∗d of a
growing bubble over the whole Reynolds number range:

C∗d =
24

Re
+ 1 with Re =

ρWd

η
· (6)

The bubble detachment diameter given by the force bal-
ance (5) then depends on gas flow rate, fluid viscosity,
fluid density, surface tension and orifice diameter.

Surface tension forces only play a significant role at
low gas flow rates [7]. The bubble diameter then becomes
very sensitive to nozzle geometry and convective flows.

For high fluid viscosity and intermediate gas flow rates,
one can neglect inertial and surface tension forces so that
the bubble size mainly results from the balance between
the downward drag force and the upward buoyancy force.
The bubble diameter at low Reynolds number then scales
as [Q2/(gRe)]1/5.

Under high gas flow rate and high pressure conditions,
the gas momentum force is observed to have a great in-
fluence on bubble formation [6,7]. In the inertial regime
(Re � 1), the force balance (5) gives a bubble diameter
d ≈ [αQ2/g]1/5 involving the dimensionless inertial pa-
rameter α.

3 Rising velocity of bubble streams

This section concerns the velocity rise of in-line interacting
bubbles generated in a stream. The problem of the free
velocity rise W0 of a single bubble in creeping flow was
solved independently by Hadamard [18] and Rybczynski
[19] from the Stokes stream functions for the outer and
inner fluids:

W 2
0 =

4

3

d(ρ− ρg)g

ρCd
with Cd =

8

Re

3χ+ 2

χ+ 1
(7)

where χ is the ratio of gas to liquid viscosity and the
expression of the drag coefficient Cd(χ,Re) accounts for

bubble internal circulation in viscous liquids. For a gas
phase of weak viscosity and density (χ ≈ 0 and ρg � ρ),
the bubble rising velocity in an unbounded viscous fluid
then obeys:

W 2
0 =

4

3

dg

Cd
with Cd =

16

Re
· (8)

Experiments by Miyahara et al. [16] for single bubble
freely rising through high viscosity glycerol – water or
glycerol – ethanol solutions give a drag coefficient Cd =
16/Re + 1 close to unity for Reynolds number Re > 30
(Fig. 2).

For bubbles generated in a stream, in-line hydrody-
namic interactions and wake effects influence the bubble
velocity rise. Hydrodynamic models of bubble streams are
either empirical [20] or limited to pair-interacting bubbles
[21–24]. Two identical spherical bubbles rise more rapidly
than a single bubble when separated by a critical distance
[21–23].

We first develop a physical approach based on the anal-
ogy with the sedimentation at low Reynolds number of a
long cylinder in an unbounded viscous fluid. The free set-
tling velocity W⊥ of a long cylinder moving perpendicu-
larly to the symmetry axis is half the velocity W‖ of the
cylinder with the main axis parallel to the flow direction
[25]. The reduced viscous resistance of a cylinder aligned
in the flow arises from the decrease in the drag coefficient.

In the case of a vertical bubble sream rising with a sta-
tionnary velocityWb, we introduce the gas volume fraction
ε = Qd/(WbV ) in the gas-liquid column. A linear inter-
polation of the inverse drag coefficient 1/Ci between the
limit values 1/Ci(ε = 0) = 1/Cd for isolated bubbles and
1/Ci(ε = 1) = 2/Cd for closely in-line interacting bubbles
then gives a first order approximation of the drag coeffi-
cient Ci(ε) for a vertical bubble stream:

1

Ci(ε)
=

1 + ε

Cd
· (9)

Substituting the above drag coefficient in equation (8)
yields the rise velocity Wb(ε) of in-line interacting bub-
bles:

W 2
b =

2dg(1 + ε)

Cd
= W 2

0 (1 + ε) with ε =
Qd

WbV
·

(10)

We may also develop a mean field theory based on the
estimation of the viscous dissipation in the liquid phase to
estimate the gas volume fraction dependence of the bubble
stream rise velocity. Similar energetic models were used to
predict the viscosity of suspension or the sedimentation
velocity of particles in concentrated systems [26,27].

At low Reynolds number, the change in potential en-
ergy associated to a steady flow is balanced by the viscous
dissipation in the fluid. The volumetric change in poten-
tial energy per unit time is the product of the bubble
rise velocity Wb and the vertical mean pressure gradient
〈∇P 〉 = (ρ − ρg)gε along the vertical gas-liquid column.
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The change in potential energy Ep per unit time during
the rise of a bubble stream of height H then takes the
form:

Ep = 〈∇P 〉WbH
πd2

4
≈ ρgεWbH

πd2

4
· (11)

The viscous dissipation per unit volume and unit time
is a quadratic function of the shear gradients in the liq-
uid phase. Neglecting the viscous dissipation in the liquid
volume trapped between bubbles and assuming a flow per-
turbation over a distance of about the bubble diameter,
the time rate of change of the viscous dissipation EV along
the bubble column may be approximated as:

EV ≈ η

(
Wb

d

)2(
9πd2

4
−
πd2

4

)
H · (12)

The condition Ep = EV then gives a linear dependence of
the quadratic bubble velocity with the gas volume fraction
in the stream in agreement with equation (10):

W 2
b ≈ dgε

dρWb

8µ
≈

2dg

Cd
ε with Cd =

16

Re
· (13)

However, the above relation fails to describe the motion of
a single bubble (ε→ 0) since the expression of the viscous
dissipation EV is valid only for closely interacting bubbles.
In the next section, the velocity rise of a bubble stream is
derived from the non linear equation W 2

b = 2gd(1 + ε)/Cd
with ε = Qd/WbV and Cd = 16/Re+ 1.

4 Average bubbling force

The rising chain of bubbles acts as an exterior shear force
on the surrounding fluid and thereby induces a forced con-
vection flow of the liquid phase. The coupling between the
rising bubble stream and the surrounding liquid may be
introduced into the momentum conservation equation of
the liquid phase through a source term equals to the av-
erage bubbling force per unit volume acting on the gas in
the bubble stream [30].

Neglecting bubble acceleration after detachment and
the deceleration stage near the liquid free surface, we as-
sume a uniform rise velocity Wb(ε) of bubbles generated
in a stream.

The change of the potential energy along the rising
bubble column is then balanced by the work Eb = FbWb

of the net average bubbling force. The condition Eb = Ep
together with equation (11) then gives the net average
bubbling force:

Fb =
πd2H

4
ρgε · (14)

By introducing the number N = ε(πd2/4)H/V of bubbles
in the gas-liquid column, the net average bubbling force
Fb then simply reduces to the buoyancy force acting on

Fig. 3. Schematic diagram of the experimental set-up.

the gas in the bubble stream:

Fb = ρgNV · (15)

The vertical average buoyancy force per unit volume
Sbz = ρgε appears in the momentum equations of the
liquid phase as a source term which only acts over the
gas-liquid column and induces a large scale recirculation
flow [30].

5 Experiments

A schematic diagram of the experimental set up is shown
schematically in Figure 3. The experiments were per-
formed in a glass tank of 20 cm× 20 cm cross-section and
20 cm height. The tank was filled with a Newtonian water-
glycerol solution of viscosity in the range from 43 mPa s up
to 800 mPa s and density 1200 kg/m3 < ρ < 1260 kg/m3.
A Couette rheometer (Low shear 30, Contraves) was used
to measure the viscosity of water-glycerol solutions. The
liquid temperature was maintained to 20 ◦C with a water
jacket surrounding the tank and controlled with ± 0.1 ◦C
accuracy. Water concentration weakly influences the sur-
face tension σ ≈ 0.06 N/m of aqueous glycerol solutions
in air [4,15,29]. The bubbles were formed by blowing
air at constant flow rate through a steel tube (10 cm
length, inner diameter da = 0.3 mm, 0.4 mm or 0.6 mm).
The emission orifice was submerged in the viscous fluid
(liquid depth 5 cm < H < 12 cm) at some millime-
tres from the bottom wall. A steady gas flow rate up to
0.5 l/mn was established and measured with flowmeters
of different ranges (0.01 l/mn - 0.1 l/mn, 0.05 l/mn - 0.5
l/mn) calibrated with a rotameter. The bubble frequency
emission ω was determined from the fast Fourier transform
of the periodic signal from a differential pressure trans-
ducer (Sedeme Kistler, 0-20 mbar) since the gas pressure
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Fig. 4. Bubble formation in water-glycerol solution for nozzle diameter da = 0.6 mm. a) Bubble visualization at air flow rate
Q = 0.048 l/mn, Q = 0.14 l/mn and Q = 0.3 l/mn (η = 164 mPa s), b) bubble stream (Q = 0.048 l/mn, η = 105 mPa s).
c) Succession of images recorded at time t = 0 s, 0.2 s, 0.4 s and 0.6 s at the video frequency 50 Hz (Q = 0.08 l/mn, η =
800 mPa s).

changes around the average value 〈P0〉 = ρgH are related
to the bubble formation sequence.

The rising bubble stream was analyzed using a 512 ×
512 pixel resolution CCD camera (Sony XC77RR) with
256 grey level resolution. The CCD camera operates in
conjunction with a Mattrox PIP 1024 imaging unit and a
PC compatible for the digitisation and storage of image
data. The calibration factor for the field of view and any
magnification was measured prior to frame record. A suc-
cession of 4 frames was then recorded at 50 Hz video fre-
quency in non interlaced mode for a better contrast (time
interval between frames 0.02 s, Fig. 4c). Specific numerical
algorithms were developed to determine the average bub-
ble size and rise velocity with 2% accuracy in successive
image frames. We consider the equatorial diameter a and
the height b of the bubble to estimate the bubble volume
V = 4πa2b/3 and account for small bubble deformation
from the spherical shape at high gas flow rates (Fig. 4a).

5.1 Bubble volume and bubble frequency emission

Bubbles generated in a stream are uniform in size
(Fig. 4b). The gas volume fraction ε = NV/(πd2H/4) in
the bubble stream ranges from 0.15 up to 0.55 at high gas
flow rates. In the stable bubbling regime, the separation
distance between bubbles always exceeds a value ≈ 0.7d
for gas flow rates Q < 0.5 l/mn and therefore we may
neglect wake effects during bubble growth.

In the low flow rate regime (Q < 0.02 l/mn), bubble
formation is surface tension controlled since inertia and
viscous forces are negligible compared to surface tension
forces. The bubble diameter is then very sensitive to the
nozzle diameter.

Under higher gas flow rates conditions (Q >
0.05 l/mn), either viscous drag or inertia forces are the
dominant downward forces and the orifice diameter da
only weakly influences the bubble volume since surface
tension forces are negligible in the force balance (Fig. 5).

Considering the relation (6) for the drag coefficient
C∗d , an inertial parameter α = 11/16 and a surface tension

Fig. 5. Bubble volume V versus orifice diameter da. Experi-
mental results for liquid viscosity η = 43 mPa s (Q = 0.03 l/mn
(2), Q = 0.06 l/mn (�)) and η = 800 mPa s (Q = 0.03 l/mn (◦),
Q = 0.06 l/mn (•)). Solid lines are calculated from equation
(5) with C∗d = 24/Re+ 1, α = 11/16 and σ = 0.06 N/m.

σ = 0.06 N/m, the force balance (5) then describes the
bubble size increase with liquid viscosity and gas flow rate
(Fig. 6). This model is quite predictive since the bubble
detachment diameter is not very sensitive to the unknown
parameters in the force balance: a 10% variation in the
drag coefficient C∗d or in the added fluid mass αρV mass
leads respetively to a maximum error less than 2% or 1%
in the bubble size.

No significant liquid depth dependence of bubble vol-
ume was further observed over the range 5 cm < H <
15 cm (Fig. 7) because of the negligible influence of both
pressure forces and large scale recirculation flow on bubble
growth. The thickness δ ≈ [ηH/(ρWb)]

1/2 of the viscous
boundary layer (0.4 cm < δ < 3 cm with 0.043 Pa s <
η < 0.8 Pa s, 5 cm/s < Wb < 40 cm/s, ρ = 1250 kg/m3

and H = 8 cm) indeed remains short compared to the
tank size (20 cm × 20 cm cross-section) and we may thus
neglect the effect of large scale recirculation flow on bub-
ble growth. In Section 5.3, we present some experiments
showing the weak influence of recirculation flow on the
process of bubble growth.
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Fig. 6. Bubble volume V versus gas flow rate Q for nozzle
diameter da = 0.6 mm. Experimental results for liquid viscosity
η = 43 mPa s (2), η = 105 mPa s (�), η = 164 mPa s (◦), η =
475 mPa s (•) and η = 800 mPa s (4). Solid lines are derived
from equation (5) with C∗d = 24/Re + 1, α = 11/16 and σ =
0.06 N/m.

Fig. 7. Bubble volume V versus gas flow rate Q for nozzle
diameter da = 0.6 mm and liquid viscosity η = 164 mPa s.
Experimental results for liquid depthH = 5 cm (4), H = 8 cm
(◦) and H = 12 cm (2). Solid lines are derived from equation
(5) with C∗d = 24/Re + 1, α = 11/16 and σ = 0.06 N/m.

The average bubble frequency emission ω derived from
the analysis of the periodic signal pressure increases with
gas flow rate and displays smaller values in high viscosity
fluids. The bubble frequency estimated from ω = Q/V
and equation (5) well agrees with experimental data as
shown in Figure 8.

However, higher bubble frequencies are observed at
the critical gas flow rate Qc1 ≈ 0.1 l/mn (Fig. 8) for a
Reynolds number Re = Wb dρ/η ≈ 5. Above the criti-
cal gas flow rate, image data and pressure signals show
an abrupt transition resulting in larger bubbles with a
smaller frequency. The transition is associated with the
coalescence of closely interacting bubbles which first oc-
curs near the liquid free surface where the spacing between
bubbles is small and then extends to the nozzle region.

A second unstable regime was observed at the critical
gas flow rate Qc2 ≈ 0.3 l/mn in relation with pair bub-
ble formation near the orifice (Fig. 9a). This alternative
mode of bubble formation arises from the close interaction
of a rapidly growing bubble with the previously detached
bubble. Wake effects or gas exchange before the closure
of the detached bubble may explain the non uniform size
distribution. Above the critical gas flow rate Qc2, bub-

Fig. 8. Bubble frequency emission ω versus gas flow rate Q for
nozzle diameter da = 0.6 mm. Experimental results for liquid
viscosity η = 43 mPa s (2), η = 105 mPa s (�), η = 164 mPa s
(◦), η = 475 mPa s (•) and η = 800 mPa s (4). Solid lines are
derived from equation (5) with ω = Q/V, C∗d = 24/Re+1, α =
11/16 and σ = 0.06 N/m.

Fig. 9. a) Visualisation of pair bubble rise at the critical gas
flow rate Qc1 = 0.3 l/mn in water glycerol solution of viscosity
η = 164 mPa s (da = 0.6 mm). b) First and second critical
gas flow rate Qc1 and Qc2 versus the nozzle diameter da for
liquid viscosity η = 43 mPa s (2), η = 105 mPa s (�) and η =
164 mPa s (◦).

ble interference phenomena disappear resulting in larger
bubbles of uniform size and lower emission frequency. The
critical gas flow rates characterising the first and second
transition regimes slightly increase with the nozzle diam-
eter and display no significant dependence with fluid vis-
cosity (Fig. 9b) since inertia forces determine the bubble
motion.

We have observed other unstable regimes at higher gas
flow rates (Q > 0.5 l/mn) which finally lead to the chaotic
jetting regime. Under very high gas flow rate conditions,
the gas momentum force exceeds the surface tension force
then leading to the jetting regime for Weber numberWe =
daρgW

2
g /σ > 1 [15,28].

5.2 Bubble rise velocity

For air bubbles of diameter d < 10 mm and rising ve-
locity Wb < 0.5 m/s in water-glycerol solutions (viscos-
ity up to 800 mPa s), the Reynolds number Re = Wdρ/η
and the Eötvös number E0 = gρd2/σ remain relatively
small (Re < 10 and E0 < 10 with a surface tension
σ = 0.06 N/m). Consequently, one can assume a nearly
spherical shape for rising bubbles [9].
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Fig. 10. Bubble rise velocity Wb(z) along the vertical gas-
liquid column for orifice diameter da = 0.6 mm, liquid depth
H = 8 cm and gas flow rate Q = 0.048 l/mn (◦) or Q = 0.1
l/mn (•). Experimental results for liquid viscosity η = 43 mPa s
(left figure) and η = 164 mPa s (right figure).

Fig. 11. Maximum bubble rise velocity Wb along the vertical
gas-liquid column for orifice diameter da = 0.6 mm and liquid
viscosity η = 475 mPa s. Experimental results for liquid depth
H = 5 cm (2), H = 8 cm (4), and H = 12 cm (◦). The solid
line is derived from equations (5, 10) with ε = Qd/WbV, Cd =
16/Re + 1, α = 11/16 and σ = 0.06 N/m.

In the low gas flow rate regime (Q < Qc1 ≈ 0.1 l/mn),
bubbles generated in a stream indeed are spherical and
uniform in size (Fig. 4a) since viscous forces are small com-
pared with surface tension forces. For higher gas flow rates
(Q > 0.1 l/mn), rising bubbles are larger and then become
slightly deformed from the spherical shape with diameter-
height ratio 1 < a/b < 1.1 for 0.1 l/mn < Q < 0.3 l/mn
and 1.1 < a/b < 1.3 for 0.3 l/mn < Q < 0.5 l/mn.

From the measurement of the separation distance
between corresponding bubbles in successive frames
(Fig. 4c), we have determined the bubble rise velocity
Wb(z) along the gas-liquid column.

The analysis of image frames shows three stages in
the bubble rise motion (Fig. 10). After an acceleration
stage following the detachment from the nozzle, the bub-
ble experiences a nearly uniform motion and a deceleration
near the liquid surface. As shown in Figure 10, the bub-
ble rise velocity undergoes significant variations along the
gas-liquid column. Despite some acceleration of the bub-
bles in the stream, the maximum bubble velocity displays
no significant variation with the liquid depth for H ≥ 8 cm
(Fig. 11) and can be considered as representative of the
stationary rising velocity Wb. The constancy of the bub-
ble rising velocity with liquid depth further results from
the small thickness of the viscous boundary layer and the
negligible influence of the large scale recirculation flow on
the bubble stream dynamics.

Fig. 12. Maximum bubble rise velocity Wb versus gas flow
rate Q for nozzle diameter da = 0.6 mm. Experimental re-
sults for liquid viscosity η = 43 mPa s (2), η = 105 mPa s (�),
η = 164 mPa s (◦), η = 475 mPa s (•) and η = 800 mPa s
(4). Solid lines are derived from equations (5, 10) with ε =
Qd/WbV, Cd = 16/Re + 1, α = 11/16 and σ = 0.06 N/m.

Fig. 13. Bubble rise velocity Wb(z) along the vertical gas-
liquid column for liquid viscosity η = 164 mPa s, gas flow rate
Q = 0.048 l/mn and orifice diameter da = 0.6 mm with a
circular ring of 3 cm diameter located near the emission orifice
(•) or without screening ring (◦).

Therefore, we may consider the bubble stream in an
unbounded viscous fluid and use equation (10) to deter-
mine the bubble rising velocity. The variation of the max-
imum bubble rise velocity Wb with fluid viscosity and gas
flow rate is well described by the non linear equations
(5, 6, 10) over a wide range of Reynolds number (Fig. 12).

5.3 Influence of recirculation flow and adjacent bubble
streams

We have studied the influence of the large scale recircula-
tion flow on the bubble growth by screening the convec-
tive flows with a circular ring of 3 cm diameter located
near the emission orifice (Fig. 14). The bubble rise veloc-
ity then decreases by about 8% (Fig. 13) since the circular
ring screens the large scale reciruclation flow and then de-
lays the detachment of the bubble. Despite a larger bubble
volume, the increase separation distance between bubbles
then results in a lower rise velocity. Davidson and Schuler
[5] have reported a similar effect and a decrease of the
bubbling frequency as the diameter of the screening ring
was increased up to about 1.5 bubble diameter. However,
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Fig. 14. Visualisation of interacting bubble streams distant
from 5 cm for liquid viscosity η = 43 mPa s, gas flow rates
Q1 = Q2 = 0.05 l/mn and orifice diameter da = 0.6 mm. Note
the presence of a circular ring on the left emission orifice.

the large scale recirculation flow near the nozzle weakly
influences bubble growth and rise velocity.

We have also studied the interaction of two verti-
cal bubble streams distant from 5 cm for liquid depth
H = 8 cm, liquid viscosity η = 43 mPa s and gas flow
rate Q = 0.05 l/mn (Fig. 14). Such a separation distance
is larger than the thickness δ ≈ [ηH/(ρWb)]

1/2 ≈ 0.3 cm
of the viscous boundary layer and we may expect only
small perturbation of the bubble streams.

An attraction between bubble streams which some-
what deviates the trajectory of bubbles is observed
(Fig. 14). We have measured the size and rise velocity
of bubbles generated in the first stream at constant flow
rate (Q1 = 0.05 l/mn) while increasing the gas flow rateQ2

through the second nozzle. We have further investigated
the effect of a circular ring located at the first emission ori-
fice (Fig. 14). The small scale recirculation flow induced by
the second bubble stream only weakly reduces the rising
velocity of bubbles generated in the first stream (Fig. 15).
The screening effect of the circular ring is more significant
and induces a 12% decrease of the bubble rise velocity
(Fig. 15). The ring screens the large scale recirculation
flow near the emission orifice and the lower bubble rising
velocity then results from the decrease of the gas volume
fraction in the gas-liquid column. The rise motion of in-
line interacting bubbles is more sensitive to hydrodynamic
interactions between close bubbles than small variation in
the bubble size.

6 Conclusion

The size of bubbles generated in a stable stream from a
nozzle submerged in a viscous fluid was predicted by a
semi empirical model based on a force balance just prior
the bubble detachment from the nozzle. In the intermedi-

Fig. 15. Maximum bubble rise velocity emitted at constant
air flow rate Q1 = 0.05 l/mn from a first emission orifice with
a circular ring (◦) or without screening ring (•) versus the gas
flow rate Q2 through a second emission orifice distant from
5 cm. Liquid viscosity η = 43 mPa s and orifice diameter da =
0.6 mm.

ate and high flow rate regime, surface tension forces are
negligible and either viscous or inertia forces determines
the bubble size. The wake force was neglected during sta-
ble bubble growth since the separation distance between
bubbles always exceeds the bubble radius.

Unstable transition regimes were observed at high bub-
bling frequency leading to bubble coalescence near the
liquid surface or pair formation bubble near the nozzle.
Bubble coalescence occurs at critical gas flow rates result-
ing in larger bubbles of uniform size and lower emission
frequency. The transition regimes display no significant
dependence with fluid viscosity since inertia forces deter-
mine the bubble motion.

The rise velocity of stable bubble streams was esti-
mated from an analogy with the settling rate of a long
cylinder in an unbounded viscous fluid and from an en-
ergy balance on the gas-liquid column. The rise velocity
of in-line interacting bubbles mainly depends on the bub-
ble size and the gas volume fraction in the bubble stream.
The net average bubbling force acting upward on the liq-
uid near the bubble stream may be estimated from the
liquid weight displaced by air bubbles within the stream.

The large scale recirculation flow was shown to have a
weak influence on bubble size and rise velocity since the
thickness of the boundary layer is small compared with
the size of the tank. The screening of the recirculation
flow with a circular ring located near the emission orifice
induces only a small decrease of the bubble rise velocity.
The constancy of the bubble size and rising velocity with
liquid depth is a consequence of the negligible effect of the
large scale recirculation flow on the bubble stream dynam-
ics. The size and the rising velocity of bubbles are weakly
affected by neighbouring bubble streams and small scale
recirculation flows when separation distances are larger
than the thickness of the viscous boundary layer.
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